
1

Path planning for a mobile robot in an
unknown environment using D* lite:

Homemate robot
Jakub Tomasek

CONTENTS

I Introduction 1

I-A Homemate robot . . . . . . . . 1

I-A1 Korus project . . . 1

I-A2 Hardware . . . . . . 1

I-A3 3D vision and oc-
tree representation . 2

I-B Project description and motiva-
tion . . . . . . . . . . . . . . . 2

I-C Environment . . . . . . . . . . 2

II Implementation 2

II-A Obstacle detection and mapping 2

II-B D* lite . . . . . . . . . . . . . 3

II-C Robot movement . . . . . . . . 3

II-D User interface and navigation
from start to goal . . . . . . . 3

III Experiments 4

IV Conclusion 4

References 5

I. INTRODUCTION

A. Homemate robot

1) Korus project: Homemate is a mobile manipu-
lation robot developed as part of KORUS (Korea +
US) project mainly by Yujin and Intelligent Systems
Research Institute (ISRC) at Sungkyunkwan univer-
sity; see [1] for more information about the project.

Figure I.1. Homemate robot

Currently, already a third generation of the robot is
available.

The robot belongs to the group of humanoid robots;
it is targeted for helping the elderly with difficulties
of every day life; for instance it might be used for
errands like bringing medicine or for video chatting
with relatives. The robot has been put in environments
like elder-care facilities.

2) Hardware: There are two computers installed on
the platform. Firstly, there is a Linux machine which
operates the hardware like motors and sensors. I do
not have any access to this computer and from my
point of view it is a black box. Secondly, there is
a tablet PC HP Elitebook 2760p (Core i5 i5-2520M
2.5GHz, 4GB DDR3); the notebook runs Windows
7. It is a brain and face of the robot. Additionally,



Special Topics in Robotics 2013 Jakub Tomášek

thanks to the touch screen, it may be used as a user
interface. The two computers are interconnected via
standard Ethernet.

There are eight motors - two main motors for wheels,
one to change angle of the camera, and five motors
used in the robot’s hand. It is also equipped with 10
ultrasound range sensors and frontal IR sensor for
detecting the obstacles. Further, there is a stargazer
to precisely determine the position of the robot.

Finally, there is a stereo-vision camera and Microsoft
Kinect placed in the “head” part of the robot.

3) 3D vision and octree representation: ISRC de-
velops the cognitive recognition system based on
the 3D vision technology; the recognition system
is utilized by the robot to make high-confidence
decisions. Thus, the robot is equipped with 3D vision
systems described above. The recognition system is
based on octree representation of cells. For more
information about the recognition system refer for
example to [2], [3].

Currently, among other things, 3D SLAM for the
robot is being created in ISRC.

B. Project description and motivation

In my term project for EME5721 I worked on 2D
navigation in an unknown environment based on the
vision. I used the Homemate to test the concept.

Homemate is already equipped with navigation soft-
ware employing the integrated range finders and IR
sensors; the navigation is based on a method using
Dubin’s curves. Yet, at the moment there are bugs
which sometimes cause the robot to fail to reach the
desired position. Therefore, I ventured to develop a
navigation using the 3D vision described above.

Goal-directed navigation problem in an unknown
environment is a standard task in Robotics. Many dif-
ferent solutions has been developed during the short
lifetime of this field; this includes basic methods like
Potential Field Method or Vector Field Histogram.
In past two decades, with advances of computation
power, methods based on grid-based search of robot’s
discrete map has become popular. Particularly with
invention of the focused Dynamic A*, which allowed
quick replanning, this kind of navigation became
feasible for real time navigation [4].

In my project, for the path planning, I utilized an
enhanced version of D*: D* lite [5].

Figure I.2. Basic environment

C. Environment

In our lab, we have a special spot dedicated for the
robot. It is only a small 3m × 2m rectangle; see
Figure I.2. The spot is marked with signs for the
stargazing sensor. Further, it is possible to move robot
outside to the extended environment; see Figure III.1.
When testing, I placed in the rectangle few artificial
obstacles made of carton so the robot wasn’t damaged
due to errors in my algorithm.

II. IMPLEMENTATION

I chose to implement the path planning in C++
because the whole platform is developed using the
language. Although, I have been extensively using
C for simple applications this was my first encounter
with C++. That was the first challenge while working
on the project.

There were three major parts to deal with while
programming the path planning. Obviously, the im-
plementation of the D* lite algorithm itself was
crucial. Next problem was obstacle detection and
mapping. Finally, I had to solve how to move the
robot. These problems are dealt with separately in
the distinct classes. I describe the classes in following
sections.

A. Obstacle detection and mapping

As I mentioned above, the 3D vision system was
developed mainly with the recognition purpose. Each
object in the field of view of the robot is represented
with 3D cells using octree representation. This allows
segmentation as well as recognition of the objects.

2



Special Topics in Robotics 2013 Jakub Tomášek

Figure II.1. Representation of 3D objects using octree

Yet, these functions are not important for the naviga-
tion. I am only concerned about the position of the
octree cell which I match with the position of the
obstacle.

Once the images from the stereo camera are pro-
cessed, I have access to all the octree cells extracted
from the image. Figure II.1 shows an example. The
octree cells carry the information about the obstacle
position in the coordinate system of the robot. I
simply take all the octree cells and map them into
2D map using transformation:

xo,g = xg +

[
cos θ − sin θ
sin θ cos θ

]
xo,r ,

x =

[
x
y

]
,

where xg and θ are the coordinates of the robot in the
global coordinate system, xo,g is the position of the
obstacle in the global coordinate system, and xo,r is
the position of the obstacle in the robot’s coordinate
system.

I must have dealt with the fact that the robot is larger
than the cell. The solution was easy: when a cell
is marked as an obstacle, neighboring cells within
a certain range depending on the cell size are also
marked as a unwalkable. I tested cell sizes 10 cm and
25 cm.

B. D* lite

The core of the whole navigation system is the D* lite
algorithm. D* lite algorithm is very well described
in detail in two publications by the original author

[5], [6]. I use this paper as the main source for the
implementation; I basically followed the pseudocode.

C. Robot movement

Once we know where the obstacles are and how to
generate the path we can move the robot. Yet, this
is not that smooth because I have access only to
the limited number of functions to move the robot.
Essentially, I can only move the robot forward and
backward and rotate the robot; each action must be
taken separately. Further, the robot control is based
solely on the movement of the motors, there is no
feedback from sensors or global localization system.
One can imagine that this is not very precise method
to control the robot.

The inaccuracy also limits the size of one cell; when
a cell of the map is too small, the robot tends to
move beyond the cell. At the end, I opted for cell
size 10 cm which was a good balance between the
traveled distance and achievable precision.

This limitation unfortunately also restricts me only
on movement from one cell to the other instead of
applying blended functions to smooth the trajectory
while using a feedback controller to follow the tra-
jectory.

I implemented a function which moves the robot from
one map cell to the other. This method can be then
called in a cycle to move to the next cell on the
planned path.

Yet, movement from one cell to the other is very
lagged since we must adjust rotation at every step. At
least I tried to improve this behavior using a simple
trick: if there is more successive cells in path aligned
on a straight line, I move the robot to the end of the
line. The maximum distance to move is limited to
consider the limited range of the camera and thus to
avoid collision with an obstacle.

D. User interface and navigation from start to goal

Using a console, user can see the map and position
of the robot. Further, user can command the robot to
go to a certain position on the map. In this case, D*
lite planner is initiated to find the shortest path.

The robot moves from current cell to the next cell on
a trajectory while mapping the environment. In case
there is an obstacle, the planner updates the costs of

3



Special Topics in Robotics 2013 Jakub Tomášek

Figure II.2. Simplified diagram of planning

the cells and quickly replans. This repeats in a loop
until the robot reaches the goal. If the planner fails
to find the path, the robot gives up and ask the user
to input a different location.

Refer to the diagram in Figure II.2 for a graphical
illustration of the navigation.

III. EXPERIMENTS

I performed several experiments which are captured
in the included videos; you can find it online on [7].

First video shows the screen of the robot running the
planning algorithm; on the left the console interface
of the robot is shown. Further, on the right, there
is the 3D reconstruction of image. I stand in front
of the robot and move. The video demonstrates how
the obstacle is mapped into 2D map and mainly it
shows the performance of D* algorithm and its quick
replanning.

Second and third video show the navigation of the
robot in the simple environment described above. The
robot is asked to go to the goal across the room. Then,
the robot was supposed to return back. Homemate
starts turned away so it doesn’t have any information
about the fact that there is an obstacle in front. In the
second video, the grid size is 25 cm and in the third
it is 10 cm.

In fact, the performance was worse for the second
case for smaller grid size. The robot tended to go too

Figure III.1. Extended environment

far and thus it twice happened to go in the obstacle
space. When this occured, the robot replanned the
path. The problem was that now the optimal solution
was to go in the shortest way from the obstacle
space. It caused the problem that the robot turned
perpendicularly away from the obstacle. For the larger
grid size in the second video, this problem did not
occur. On the other hand, the robot often goes on
“zig-zag” path towards the goal.

In general, the robot was usually able to avoid the
obstacle.

IV. CONCLUSION

In conclusion, in the project I used 3D camera to
detect obstacles and navigate Homemate robot in an
unknown environment. As I showed in the experi-
ments, the robot is able to navigate using my D*
lite algorithm in an unknown but simple environment
from the current location to any position on the map
if there is a possible path. The robot moves from cell
to cell; with a small hack it can go faster when the
line is straight. Obviously, this solution is far from
the best but it was the most viable I could come up
with given the restrictions on the control of the robot.

My solution likely won’t replace the integrated nav-
igation by Yujin. It wouldn’t be plausible anyway to
control the robot in the real time because of the delay
from the Ethernet connection between the mainframe
computer and the interface laptop.

I didn’t have sufficient time to finish all the pe-
culiarities of navigation. For example, it would be
useful to implement “obstacle forgetting”. Presently,
the robot can navigate only in a static environment

4



Special Topics in Robotics 2013 Jakub Tomášek

and doesn’t deal with moving obstacles. Further, it
would be useful to thoroughly test the system and
debug all the errors.

Acknowledgments

I would like to thank to Ahmed M. Naguib for letting
me work with the robot despite there were deadlines
to finish important parts of the recognition system. I
am also grateful that he took his time to show me
how to control the robot.

REFERENCES

[1] 2013. [Online]. Available: http://inno.yujinrobot.com/ 1
[2] S. Lee, “Cognitive recognition and the homemate robot,” in

2011 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 2011, pp. 1–1. 2

[3] S. Lee, M. Ilyas, K. Jaewoong, and A. Naguib, “Evidence
filtering in a sequence of images for recognition,” in 2012
IEEE Applied Imagery Pattern Recognition Workshop (AIPR),
2012, pp. 1–8. 2

[4] A. Stentz, “The focussed d^* algorithm for real-time replan-
ning,” in IJCAI, vol. 95, 1995, pp. 1652–1659. 2

[5] S. Koenig and M. Likhachev, “Fast replanning for navigation
in unknown terrain,” IEEE Transactions on Robotics, vol. 21,
no. 3, pp. 354–363, 2005. 2, 3

[6] ——, “Improved fast replanning for robot navigation in un-
known terrain,” in IEEE International Conference on Robotics
and Automation, 2002. Proceedings. ICRA ’02, vol. 1, 2002,
pp. 968–975 vol.1. 3

[7] J. Tomasek, “Path planning for a mobile robot in an unknown
environment using d* lite: Homemate robot,” 2013. [Online].
Available: http://youtu.be/HxmRTQJ6JwY 4

5

http://inno.yujinrobot.com/
http://youtu.be/HxmRTQJ6JwY

	Introduction
	Homemate robot
	Korus project
	Hardware
	3D vision and octree representation

	Project description and motivation
	Environment

	Implementation
	Obstacle detection and mapping
	D* lite
	Robot movement
	User interface and navigation from start to goal

	Experiments
	Conclusion
	References

