
1

Intelligent agents in Tileworld: report
Jakub Tomasek (N1308376B, Team United)

Abstract—The report describes our solution to the
semestral project for CZ4046. We applied genetic
programming (GP) to optimize behavior of agents in
Tileworld, a multi-agent test-bead. The two resulting
agents achieved on average scores 59, 726, and 19 when
deployed in the environments number one, two, and
three respectively.

CONTENTS

I Introduction 1

I-A Introduction of Tileworld 1

I-B Technical background 2

I-C Assignment 2

II Agent design 2

II-A Introduction 2

II-B General structure and the control
loop 3

II-C Cooperation 4

II-D Memory management 5

II-E Genetic programming for Tileworld 5

III Results and discussion 6

III-A Agent breeding 6

III-B Experiments 6

III-C Elite agents for separate environ-
ments 6

III-D Candidate agent and discussion . . 7

III-E Comparison 8

IV Conclusion 8

References 9

I. INTRODUCTION

A. Introduction of Tileworld

Tileworld is an agent test-bead initially introduced
by Pollack and Ringuette in 1990 [1]. Since then, the

rules were slightly adjusted for recent needs to test
more relevant issues in multiagent systems [2].

Tileworld is composed from cells arranged into a
square grid. There are four types of objects which
can be placed in the cells: tiles, holes, obstacles,
and agents. Except agents, the objects appear and
disappear dynamically. That is a statistical process;
in each step, Gaussian distribution is sampled to
determine number of objects of the given type created
in the step. Each object has fixed lifetime after which
the object disappears. To modify the density of the
environment and basically change the nature of the
problem we can adjust mean and variance of the
Gaussian. Spacial distribution of objects in Tileworld
is uniform.

An agent receives points for filling holes with tiles.
To achieve that, the agent have six actions available:
move up/down/left/right, pick up a tile, and drop a
tile in a hole. Each action takes one time step of
Tileworld. In the end of a run, performance of the
agent is rated based on how many holes it filled over
run of the agent given how many tiles were generated
at the particular run.

There are several limitations. Agent deployed in
Tileworld can carry up to three tiles at a time. Besides
that, an agent is also limited by virtual fuel. One
unit of fuel is consumed with each movement. Once
the agent runs out of fuel it cannot move anymore.
However, at any point, the agent can visit gas sta-
tion located at [0,0] where it can refill back to the
maximum level. That adds seventh action available
to an agent: refueling. Additionally, an agent is also
limited by its sensor range so that it can see only its
neighbourhood.

Therefore, we can describe Tileworld as discrete,
dynamic, episodic, deterministic, and not fully ac-
cessible environment.

Tileworld is very flexible [2]. There are several ver-
sions of Tileworld with distinct features as each au-
thor alters the rules in order to test certain problems:
for example, the value as well as the size of a hole
may vary, holes and tiles may have different shape,

CZ4046 2014, Semestral project Jakub Tomášek

or agents may push tiles instead of picking them up
and dropping them into holes.

B. Technical background

We were provided with a Tileworld system based
on MASON. MASON is an open-source, multiagent,
multi-domain, discrete-event simulation toolkit writ-
ten in Java [3]. It was designed to facilitate large-scale
simulations and it provides tools for visualization in
2D and even in 3D. Agents are regular Java objects
extending TWEntity.

Figure I.1 shows the visualization of Tileworld in
MASON. There, tiles are green, holes are purplish,
obstacles are black, agents are blue, and gas station
looks like a house. Dashed lines around agents signify
the range of their sensors.

(a) (b)

Figure I.1: (a) Visualization of Tileworld and (b)
Visualization of memory of a single agent. Tiles are
green, holes are brownish, obstacles are black, agents
are blue, refueling station is a house. Dashed lines
around agents signify the range of their sensors.

C. Assignment

The aim of the exercise was to use the provided
system to implement two agents which would co-
operate when deployed in the environment in order to
achieve highest score possible in 5,000 steps. Agents
are initially deployed at coordinates [0,0] and [1,1].
Further, maximum level of fuel was 1,000 units and
the reach of sensor was only three cells; i.e. the agent
could access to 7 × 7 neighbourhood. Finally, the
agents could exchange only 3 pieces of information
per each step.

There are three reference configurations of the envir-
onment for testing, see Section Table I. In the table,
µobjects, σ

2
object refer to the mean and variance of the

Gaussian distribution describing number of objects
created per each step.

Env. 1 Env. 2 Env. 3

Size 100× 100 50× 50 150× 40

µtile 0.2 2 0.02

σ2
tile 0.05 0.5 0.001

µhole 0.2 2 0.2

σ2
hole 0.05 0.5 0.01

µobstacle 0.2 2 0.5

σ2
obstacle 0.05 0.5 0.1

Lifetime 100 30 120

Table I: Configuration of three predefined environ-
ments for testing.

II. AGENT DESIGN

A. Introduction

From the lectures, we know that an intelligent agent
should be reactive, pro-active, and social. That is,
the agents should be capable of responding to the
changes of Tileworld such as appearing and dis-
appearing objects. They should be able to mover
around the environment, pick up tiles and and drop
them. Secondly, the agents should take initiatives; i.e.
explore Tileworld in a clever way. Finally, the agents
must communicate in order to align their behaviour
and get better global information about the world.
This briefly outlines problems needed to be solved to
achieve good performance.

There were two basic approaches in our group for the
design of an agent. First, probabilistic approach tries
to maximize expected utility based on a probabilistic
model of the world and uses altered path planning
in order to maximize the explored area. Second
approach applies genetic programming (GP) to find
the optimal strategy for exploring the world.

My report focuses on description of the GP approach.
Please refer to our group presentation and other
reports for more information about the first approach.
Both architectures are compared in experiments; see
Section III-E. Motivation to additionally implement
GP to solve the problem was partly selfish: there
are only seldom opportunities to apply and learn this
intriguing methods in practice.

1) Genetic programming and grammatical evolution:
Given the simple structure of Tileworld it would
be attractive to apply the simple reactive approach
for the design of the agents. While this might be
sufficient in some cases, there are many variables

2

CZ4046 2014, Semestral project Jakub Tomášek

and parameters and when combined with all pos-
sible actions it becomes intractable for a human to
try optimizing the program. Moreover, while human
intuition is often useful, it might be rather a burden in
such case. Therefore, it becomes appealing to let the
agents learn themselves the best strategy for exploring
the world of tiles and learn how to cooperate. There
is a number of methods used in multiagent systems
for learning, for example neural networks, learning
decision trees, classifiers, and genetic-based methods
[4]. We utilized grammatical evolution (GE), smaller
sister of more popular GP, as it is designed to develop
algorithmic behaviour suitable for the problem [5].

GP became well-known tool of artificial intelligence.
It belongs among evolutionary methods inspired by
biological evolution. This direction in AI was mainly
popularized by John Holland in early 1970s [6]. GP
is one of the directions later introduced by Koza [7].
It automatically creates working computer programs
only from given high-level program statement. Each
program is represented by a tree and is assigned
fitness according to its performance. In the first step,
initial population of programs is randomly generated.
Iteratively, to create offsprings we mix programs of
each population together according to their fitness
using cross-over operation while maintaining the elite
candidates. Offsprings then become the next popula-
tion. Further, operation like mutation are applied in
order to avoid entrapment in local minima.

There is a number of nuances of GP which were
introduced over time. It was shown that GP can
perform actually better than a human in number of
applications [8].

GE was presented as a more general alternative to GP
[9]. While the intentions and principle behind GE and
GP are similar, GE can evolve complete programs in
an arbitrary language. It evolves programs according
to rules of grammar defined by Backus-Naur form
(BNF).

More recent works suggest that genetic network pro-
gramming (GNP) should be more viable for the dy-
namic problems like Tileworld [10]. GNP represents
program as a graph and thus it can create variety of
loops functioniong like a memory over time similar
to automaton. In [10] GNP performs better than GP.
The main advantage is notably simpler representation
of equivalent program.

B. General structure and the control loop

Agent performs its actions in classical feedback con-
trol loop consisting of four functions: see, think, act,
and communicate. Function see fetches all objects in
the neighbourhood and saves them into the memory.
One of the problems here is the memory management
as we must discard too old, irrelevant objects. That
is discussed in Section II-D. Function think decides
the next step of the agent and act then executes the
outputted action. Finally, using function communic-
ate, agent shares the most important results with its
peers using Blackboard architecture. Communication
is described in Section II-C.

Function think is the core of the decision-making.
Here we decide the action taken based on the obser-
vation of Tileworld. Rough outline of the procedure
in pseudo code is in Algorithm 1.

Algorithm 1 Pseudo code of procedure think

1 function TWAction think(){
2 if(numberOfTiles()>0 AND

isThisCellHole()) return PUTDOWN;
3 else if(numberOfCarriedTiles()<3 AND

isThisCellTile()) return PICKUP;
4 else if(isThisFuelStation() AND state

==refueling) {
5 state=exploring;
6 return REFUEL;
7 }
8 else if(needToRefuel()) {
9 state=refueling;

10 }
11

12 if(state==exploring) {
13 BD= mostUnexploredSector();
14 vector = decideDirection();
15 }
16 else {
17 if(tileOnWay() AND

numberOfCarriedTiles()<3) vector
=tilePosition-currentPosition;

18 else if(holeOnWay() AND
numberOfCarriedTiles()>0) vector
=holePosition-currentPosition;

19 else vector=vectorInverse(
currentPosition);

20 }
21

22 return (MOVE in getDirectionFromVector
(vector));

23 }

Agent performs essential actions as an instinct
without thinking. This is similar to a human; for
example, one doesn’t cautiously control breathing.
Similarly to that, an agent picks up a tile or fills a hole
when standing above one. These actions have priority.

3

CZ4046 2014, Semestral project Jakub Tomášek

There is virtually no situation when this wouldn’t be
the optimal action.

The agent has only two internal states: exploring
and refuelling. Refuelling is initiated under specific
conditions; the procedure is discussed in Section
II-C3. When not refuelling, the agent is exploring
Tileworld. The core function of the exploration is
decideDirection which outputs a vector. The vector
determines the direction in which the agent should
move and is learned using GE described in Section
II-E1.

C. Cooperation

It is questionable whether applying advanced tech-
niques of cooperation like task sharing, forming co-
alitions, or voting to take decisions can be really
beneficial in our case. The reason is that firstly there
are only two agents and secondly the act of filling a
hole with a tile is a simple task which agent can
finish without forming a coalition with the other
agent. Yet, such statement is not true in the version of
Tileworld where agents push tiles [11]. There, agents
can cooperate even on the level of moving one tile.

Nonetheless, agents cooperate on the global level.
Firstly, in order to achieve maximum score, agents
must cohere; i.e. align their behaviour. This basically
means that they shouldn’t waste their time exploring
parts of the world other agent already explored.
Secondly, they should update each other with relevant
information to obtain more precise view of Tileworld.

1) Aligning behaviour: In the solution, there is no
specific mechanism applied to achieve the coherence.
That is, cooperation is not enforced externally to the
decideDirection function. In fact, it was main lure to
implement GP to observe whether such cooperation
will emerge naturally. Therefore, one of the inputs
into GE is the vector from the agent to the other
agent.

2) Communication: Further, agents can use com-
munication in order to get more precise view of
Tileworld. Agents can ask other agents to send back
location of tiles and holes on the other side. However,
this becomes important only in certain situations,
particularly when Tileworld is dense like in the
second configuration, such communication is useless.
It might be beneficial when the environment is very
sparse. Besides that, the agent sends information
about position and state.

We used blackboard communication architecture.
Agents don’t interact with each other directly but
the communication between them is facilitated by a
blackboard. Each agent is limited to three pieces of
information uploaded to the blackboard per one step.
Since agents are otherwise homogeneous, each agent
is assigned with id to access the information on the
blackboard.

Communication on the side of the agent is per-
formed by function communicate. It is described in
Algorithm 2. When agents determines that a percept
is worth sharing it puts it into a queue. It selects
important percepts like unpicked-up tiles or unfilled
holes. Further, when the second agent asks for an
object of certain type, it uses priorityQueue instead.

Algorithm 2 Pseudo code of procedure communicate

1 function communicate(){
2 i = 3;
3 if(timeOfSimulation MOD 5==0 AND i>0){
4 uploadPosition(myId);
5 i--;
6 }
7 if(changedState() AND i>0) {
8 uploadState();
9 i--;

10 }
11 if(numberOfCarriedTiles==3 AND

dontSeeHole() AND !askedForHole AND i
>0){

12 uploadRequestForHole();
13 i--;
14 }
15 else if(numberOfCarriedTiles==0 AND

dontSeeTile() AND !askedForTile AND i
>0){

16 uploadRequestForTile();
17 i--;
18 }
19

20 while(i>0 AND !isEmpty(PriorityQueue)) {
21 uploadPercept(pop(PriorityQueue));
22 i--;
23 }
24 while(i>0 AND !isEmpty(Queue)) {
25 i--;
26 uploadPercept(pop(Queue));
27 }
28 }

3) Refuelling: The problem of refuelling is separated
into two distinct subproblems. One is deciding when
to refuel the agent and the second is the refuelling
procedure itself.

Decision to refuel is based on two facts: firstly, the
closer an agent is to the refuelling station the cheaper
is to go to refuel. Secondly, agents can be efficient

4

CZ4046 2014, Semestral project Jakub Tomášek

while refuelling and explore the world on the way to
the pit stop. Therefore it is not desirable that both
agents refuel at the same time. As each agent must
go refuel at least 5 times during one run we can
sacrifice the surplus 1000 units in order to optimize
the organization of refuelling.

Agent commences refuelling under two circum-
stances:

• It reaches emergency level of fuel (distanceTo-
FuelingStation+20)

• No other agent is refuelling and fuel reaches
trigger level defined by function f of Manhattan
distance to the gas station dist:

f(dist) = − 400

xmax + ymax
dist+ 400,

where xmax and ymax are dimensions of Tileworld.
The procedure of refuelling is straightforward. We set
the direction to the gas station and allow the agent
to pick up/drop tiles only on the way; i.e. with angle
in range

〈
π
2 , π

〉
relative to the agent. This is already

obvious from function think in Algorithm 1.

D. Memory management

Each agent is equiped with memory. In each step, all
detected objects are simply pushed into the memory
with time stamp of detection. In Tileworld objects dis-
appear after certain time given by parameter lifeTime.
The main problem here is estimate when it is optimal
to discard an object from the memory. Even if we
knew the lifeTime precisely, it wouldn’t be enough
to know that object disappeared without seeing the
object disappear.

Therefore, we try to guess lifeTime only roughly
from first object observed to disappear. There is high
probability that such object appeared in the early
stage of the run. Time of simulation when the object
disappears gives us biased estimate of the lifeTime
higher than the real lifeTime. This is then used to
forget objects. The estimate is improved over time;
when agent keep discovering that objects are not
where they were assumed to be according to memory
lifeTime estimate is decreased.

Additionally, I added feature of sectors in the
memory. The grid is divided into sectors with size
10 × 10 cells. When an agent visits a sector we
decrease the value of the sector by constant; by
testing I determined 300 units is a reasonable value.

Visit of a sector by other agent decreases the value
twice. In each step the value of each sector increases
back up by one unit until it reaches back the original
maximum value. This way, we can easily retrieve the
most unexplored region of grid from memory of the
agent.

E. Genetic programming for Tileworld

1) Exploration of Tileworld: Our work is partly in-
spired by work of Luke [5] who successfully applied
GP to evolve team of soccer bots with ultimate
application in RoboCup Soccer. While the domains
are different, there are many similarities. Tileworld
is obviously simpler as soccer is continuous envir-
onment with larger set of actions. Also number of
agents is only 2 instead of 11 in soccer. Further, [11]
proposed similar approach to the one taken here as
well.

The evolved program performs vector and scalar op-
erations with input parameters and it outputs a vector.
The vector is then converted into direction using
simple function getDirectionFromVector. Basically,
when vector points to the right the agent will go to the
right, when vector points to the left the agent will try
to go left. If there is an obstacle, alternative direction
is taken.

Obviously, this is not optimal as the agent can get
stuck on clustered obstacles. This wasn’t a problem
for the given environments but it might be a problem
if the environment was denser. Then, it would be
beneficial to apply A* search; i.e. we would use A*
to determine the shortest path between the agent and
the position where the vector points to taking the
first step of the path. However, A* search is very
expensive for applying when using GP and it is, in
fact, not necessary as I show in experiments (Section
III-D). Therefore, this remained an opened option.

I devised set of 12 vector and scalar operations. They
are all listed in Table II. Besides that, there is around
22 different input parameters retrieved from memory
or from the blackboard; see Table III. The operations
and parameters can be nested according to the rules
of grammar defined using BNF:

1 <opVector> ::= biggerThan(<opScalar>,<
opScalar>,<opVector>,<opVector>) |
vectorAdd(<opVector>,<opVector>)|
scalarProduct(<opScalar>,<opVector>) |
scalarProduct(-1,<opVector>) | rotate90
(<opVector>) | zeroVector(<opVector>,<
opVector>,<opVector>) | <vector>

5

CZ4046 2014, Semestral project Jakub Tomášek

2 <opScalar> ::= norm(<opVector>) |
dotProduct(<opVector>,<opVector>) |
scalarAdd(<opScalar>,<opScalar>)|
scalarTimes(<opScalar>,<opScalar>) | <
scalar>

3 <vector> ::= T1 | H1 | A1 | A2 | BD |
previousDirection | randomVector()

4 <scalar> ::= 0 | 1 | -1 | 2 | 1/2 | nOfT
| dA2 | A2r | randomScalar() | paramT1
[<i>] | paramH1[<i>]

5 <i> ::= 0 | 1 | 2

Both agents deployed into Tileworld are homogen-
eous. While [5] reported improvement with hetero-
geneous population, our problem differs as as there is
no cooperation on the basic level. This was discussed
in Section II-C.

2) Technical implementation of GP: For implement-
ation of GP I used framework EpochX [12]. It allows
breeding of program populations according to defined
grammar and it also implements all genetic operations
necessary.

We must be able to evaluate the performance of an
agent with the generated program in string in Tile-
world. There were two options: using an interpreter
or compiling separate class. While using interpreter
was a straightforward solution, it was very inefficient.
Since there are two agents, the program is ran 10,000
times only in one initiation of Tileworld. Considering
we have 500 programs in a population and 200
generations, the time is crucial. Additionally, I make
average over two runs since there are stochastic
operations. Thus finally the second, more complicated
solution, was the only plausible. With each initiation
of Tileword new class is compiled based on the
generated program. That significantly improved speed
and made the application feasible.

III. RESULTS AND DISCUSSION

A. Agent breeding

After several experiments I heuristically chose para-
meters of GP: population size was limited to 500
while the evolution stopped after 100 generations.
Further, only operations crossover and mutation were
applied with probability 0.7 and 0.3 respectively.
Since the programs were stochastic, I also allowed 5
elite programs to be preserved to the next generation.
Also, I limited initial depth of the tree to 14 since
deeper program than 14 often couldn’t be compiled
because of its length. It is caused by Java as it limits
size of bytecode of a single method to 64kB.

Generally, the fitness rocketed up in few first genera-
tion and then was trapped in a local maximum. Even
high probability of mutation didn’t really help. The
problem at this point was that the breed of programs
converged towards a simpler solution while, in my
opinion, the optimal solution lay in more structured
and deeper program. The final elite programs had
usually depth 5-8. Notably, the elite solution for
the third environment was extremely simple. The
program directed the agent towards the first tile it saw
or the first tile it received information about. Yet, the
performance was remarkable. The agents were able to
locate and place more than 20% of tiles on average;
see Table IV. Despite all that, the solutions were
generally better than the simple random exploration
even for the over-fitted programs applied on other
configurations.

0 5 10 15 20 25 30 35
−200

0

200

400

600

800

X: 15
Y: 710

F
itn

es
s

Population

Fittest candidate
Worst candidate
Mean of the population

Figure III.1: Evolution in second environment. The
fitness rockets up and then levels off at local max-
imum.

B. Experiments

Each program mentioned here in results was ran 100
times in order to obtain mean and variance. Further,
variables of the configuration were controlled in order
to demonstrate certain features of the environments
and test the sensitivity to the changes.

C. Elite agents for separate environments

At first, I trained the agents using each environment
configuration separately; please refer to Table I for
the configuration parameters. Table IV compares the
performance of the final agents from each configur-
ation. The results were rather over-fitted programs
as none of them didn’t really excel in all three
environments.

6

CZ4046 2014, Semestral project Jakub Tomášek

Function # of parameters returns Description

biggerThan(s1,s2,v1,v2) 4 v if s1>s2 return v1, otherwise return v2

vectorAdd(v1,v2) 2 v adds two vectors

scalarProduct(s1,v1) 2 v performs product of vector with scalar

inverse(v1) 1 v returns inverse of the vector v1

rotate90(v1) 1 v returns vector perpendicular to v1

zeroVector(v1,v2,v3) 3 v if v1 is [0;0], returns v2, otherwise v3

randomVector() 0 v returns normalized random vector

norm(v1) 1 s returns l2-norm of the vector

dotProduct(v1,v2) 2 s performs dot product between v1 and v2

scalarAdd(s1,s2) 2 s returns s1+s2

scalarTimes(s1,s2) 2 s returns s1*s2

randomScalar() 0 s returns random scalar on range 〈0; 5〉

Table II: Functions of GP

Terminals Type Description

T1,T2 v first/second nearest tile

H1,H2 v first/second nearest hole

prevDirection v previous output vector

A1 v position of the agent

A2 v vector to the other agent

BD v vector to unexplored sector

numberOfTiles s number of carried tiles of the agent

dA2 s distance to the second agent

A2r s second agent refuelling

paramT1[i] s number of obstacles/tiles/holes around T1

paramH1[i] s number of obstacles/tiles/holes around H1

0,1,-1,2,1/2 s constants

Table III: Terminals/Input parameters of GP

Env. E µe1 σ2
e1 µe2 σ2

e2 µe3 σ2
e3

Env. 1 89 0.93 670 35.70 14 1.05

Env. 2 59 6.93 726 61.23 19 0.36

Env. 3 17 0.45 109 87.60 20 1.84

Table IV: Scores of final agents optimized in respect-
ive environment configuration E. µe and σ2

e refer to
mean and variance of their average score achieved in
configuration e.

D. Candidate agent and discussion

The ultimate goal was to find an agent which would
perform well universally in as many configurations

as possible. I attempted to redesign fitness function
so that it could be based on all three environments.
This actually didn’t resulted in better agents than
those described in the previous section. Therefore,
having choice from three programs, the elite pair of
agents bred in the second environment achieved most
universal results and thus it is my final choice.

I further performed “sensitivity” analysis, i.e. I ex-
amined how the performance changes when paramet-
ers are slightly changed for the second environment.
Figure III.2 shows the change of score when lifetime
of objects is controlled. The score rises until the
lifetime reaches 60. Then obstacles are so dense that
the agents start to have troubles to reach the fuel

7

CZ4046 2014, Semestral project Jakub Tomášek

point. I predicted this when designing the agents.
The solution would be implementation of any search
method, for example A* which guarantees optimal
path.

Additionally, Figure III.3 shows similar trend for
changing of the density for each object separately
and for changing the total density. Interestingly, the
score at the agents at first decreases. That might
be caused by the internal structure of the program.
Naturally, when density of holes and tiles increases
with agent achieves better score. This effect levels off
more quickly when only number of either holes or
tiles is constant. The pleasant result is that increasing
obstacle density doesn’t have significant influence
on the performance. Thus simplified vector approach
taken in this work seem to be sufficient.

E. Comparison

The advantage of having two separate architectures
is that we can compare between the solutions and
verify whether the direction was correct. Table V
compares the probabilistic agent introduced in the
beginning with the agent described in this report.
The agent optimized using GP clearly outperforms
the probabilistic agent in the configuration two and
three. Further, in configuration one the agent gives
more consistent results than the probabilistic agent.
Moreover, if the probabilistic agent was compared
against the agent bred in configuration one it would
get significant lead while it would be comparable in
the other environments.

µe1 σ2
e1 µe2 σ2

e2 µe3 σ2
e3

Probability 70.86 26.60 698 159.00 16 11.93

GP 59 6.93 726 61.23 19 0.36

Table V: Comparison of scores between my candidate
agent and probability based agent .

IV. CONCLUSION

To sum up the foregoing, in the project we used
two methods to design agents for exploring Tile-
world. One is based on probabilistic approach and
the second used GP to optimize agents in the sense
of natural selection. This report mainly focused on
the latter. Agents running the elite code were bred
in the second environment where it performed very
well. Unfortunately, we weren’t able to avoid the

0 10 20 30 40 50 60
0

500

1000

1500

Lifetime

S
co

re

Figure III.2: Candidate program in the second envir-
onment when lifetime is controlled.

0 0.5 1 1.5 2 2.5 3
0

200

400

600

800

1000

Parameter

S
co

re

µ
tile

µ
obstacle

µ
hole

Density

Figure III.3: Score of the candidate program in the
second environment when µtile, µobstacle, µhole and
total density (i.e. all parameters together) are adjusted
on interval 〈0; 3〉 (x-axis).

etternal problem of optimization, trapping in the local
maxima. Programs converged to local maxima despite
high degree of “annealing” from mutations applied.
These solutions may have been oversimplified and I
believe that better solution could have been achieved.
Quality of evolved solution is bound to the quality
of input functions and parameters. That determines
the nature of the program space and subsequently
the achievable results. Most likely, there is more
appropriate approach than using simple vectors to get
better results. As mentioned earlier, more recent lit-
erature proposes Genetic Network Programming as a
superior tool for dynamic applications like Tileworld.

Besides that, the quality of “side” functions such as
refueling, communication, and memory management
turned out to have crucial influence on the per-
formance. For example, when I disabled exchanging
percepts, the performance of the agent three halved.
Also the added functionality of unexplored sectors
was often used in the generated programs. When one
observes the behaviour of agent 2 in visualization, it
is clearly used whenever there is no tile or hole to
follow.

Finally, two homogeneous agents deployed in envir-
onment 1, 2, and 3 were able to fill on average 59,

8

CZ4046 2014, Semestral project Jakub Tomášek

726, and 19 holes with tiles.

REFERENCES

[1] M. E. Pollack and M. Ringuette, Introducing the Tileworld:
Experimentally evaluating agent architectures. Defense
Technical Information Center, 1990. [Online]. Available:
http://www.aaai.org/Papers/AAAI/1990/AAAI90-028.pdf 1

[2] M. Lees, “A history of the tileworld agent testbed,” School of
Computer Science and Information Technology, University
of Nottingham, Nottingham, 2002. [Online]. Available:
http://www.cs.nott.ac.uk/WP/2002/2002-1.pdf 1

[3] S. Luke, C. Cioffi-Revilla, L. Panait, and K. Sullivan,
“Mason: A new multi-agent simulation toolkit,” in
Proceedings of the 2004 SwarmFest Workshop, vol. 8,
2004. [Online]. Available: http://cobweb.cs.uga.edu/~maria/
pads/papers/mason-SwarmFest04.pdf 2

[4] D. L. Poole and A. K. Mackworth, Artificial Intelligence:
foundations of computational agents. Cambridge University
Press, 2010. [Online]. Available: http://www.google.
com/books?hl=en&lr=&id=eALhh_tkpv4C&oi=fnd&pg=
PR7&dq=poole+artificial+intelligence+foundations+of+
&ots=NrjVegZbh2&sig=HV93x-lgAPJeRrOOcY-5I57HvYY
3

[5] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler,
“Co-evolving soccer softbot team coordination with genetic
programming,” in RoboCup-97: Robot soccer world cup
I. Springer, 1998, p. 398–411. [Online]. Available: http:
//link.springer.com/chapter/10.1007/3-540-64473-3_76 3, 5,
6

[6] J. H. Holland, Adaptation in natural and artificial systems:
An introductory analysis with applications to biology, control,
and artificial intelligence. Oxford, England: U Michigan
Press, 1975, vol. viii. 3

[7] J. R. Koza, Genetic programming: on the programming
of computers by means of natural selection. MIT
press, 1992, vol. 1. [Online]. Available: http://www.
google.com/books?hl=en&lr=&id=Bhtxo60BV0EC&oi=
fnd&pg=PP17&dq=genetic+programming+koza&ots=
9ojUkqj1LU&sig=qxGAqJYiWmQNEUw0CLtZp7Cd-Ks 3

[8] ——, “Human-competitive results produced by genetic
programming,” Genetic Programming and Evolvable
Machines, vol. 11, no. 3-4, pp. 251–284, Sep. 2010.
[Online]. Available: http://link.springer.com/article/10.1007/
s10710-010-9112-3 3

[9] C. Ryan, J. J. Collins, and M. O. Neill, “Grammatical
evolution: Evolving programs for an arbitrary language,”
in Genetic Programming. Springer, 1998, p. 83–96.
[Online]. Available: http://link.springer.com/chapter/10.1007/
BFb0055930 3

[10] B. Li, S. Mabu, and K. Hirasawa, “Tile-world #x2014; a
case study of genetic network programming with automatic
program generation,” in 2010 IEEE International Conference
on Systems Man and Cybernetics (SMC), Oct. 2010, pp.
2708–2715. 3

[11] H. Iba, “Emergent cooperation for multiple agents
using genetic programming,” in Parallel Problem
Solving from Nature — PPSN IV, ser. Lecture
Notes in Computer Science, H.-M. Voigt, W. Ebeling,
I. Rechenberg, and H.-P. Schwefel, Eds. Springer
Berlin Heidelberg, Jan. 1996, no. 1141, pp. 32–41.
[Online]. Available: http://link.springer.com.ezlibproxy1.ntu.
edu.sg/chapter/10.1007/3-540-61723-X_967 4, 5

[12] F. Otero, T. Castle, and C. Johnson, “Epochx: Genetic
programming in java with statistics and event monitoring,”
in Proceedings of the fourteenth international conference
on Genetic and evolutionary computation conference

companion. ACM, 2012, p. 93–100. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2330800 6

9

http://www.aaai.org/Papers/AAAI/1990/AAAI90-028.pdf
http://www.cs.nott.ac.uk/WP/2002/2002-1.pdf
http://cobweb.cs.uga.edu/~maria/pads/papers/mason-SwarmFest04.pdf
http://cobweb.cs.uga.edu/~maria/pads/papers/mason-SwarmFest04.pdf
http://www.google.com/books?hl=en&lr=&id=eALhh_tkpv4C&oi=fnd&pg=PR7&dq=poole+artificial+intelligence+foundations+of+&ots=NrjVegZbh2&sig=HV93x-lgAPJeRrOOcY-5I57HvYY
http://www.google.com/books?hl=en&lr=&id=eALhh_tkpv4C&oi=fnd&pg=PR7&dq=poole+artificial+intelligence+foundations+of+&ots=NrjVegZbh2&sig=HV93x-lgAPJeRrOOcY-5I57HvYY
http://www.google.com/books?hl=en&lr=&id=eALhh_tkpv4C&oi=fnd&pg=PR7&dq=poole+artificial+intelligence+foundations+of+&ots=NrjVegZbh2&sig=HV93x-lgAPJeRrOOcY-5I57HvYY
http://www.google.com/books?hl=en&lr=&id=eALhh_tkpv4C&oi=fnd&pg=PR7&dq=poole+artificial+intelligence+foundations+of+&ots=NrjVegZbh2&sig=HV93x-lgAPJeRrOOcY-5I57HvYY
http://link.springer.com/chapter/10.1007/3-540-64473-3_76
http://link.springer.com/chapter/10.1007/3-540-64473-3_76
http://www.google.com/books?hl=en&lr=&id=Bhtxo60BV0EC&oi=fnd&pg=PP17&dq=genetic+programming+koza&ots=9ojUkqj1LU&sig=qxGAqJYiWmQNEUw0CLtZp7Cd-Ks
http://www.google.com/books?hl=en&lr=&id=Bhtxo60BV0EC&oi=fnd&pg=PP17&dq=genetic+programming+koza&ots=9ojUkqj1LU&sig=qxGAqJYiWmQNEUw0CLtZp7Cd-Ks
http://www.google.com/books?hl=en&lr=&id=Bhtxo60BV0EC&oi=fnd&pg=PP17&dq=genetic+programming+koza&ots=9ojUkqj1LU&sig=qxGAqJYiWmQNEUw0CLtZp7Cd-Ks
http://www.google.com/books?hl=en&lr=&id=Bhtxo60BV0EC&oi=fnd&pg=PP17&dq=genetic+programming+koza&ots=9ojUkqj1LU&sig=qxGAqJYiWmQNEUw0CLtZp7Cd-Ks
http://link.springer.com/article/10.1007/s10710-010-9112-3
http://link.springer.com/article/10.1007/s10710-010-9112-3
http://link.springer.com/chapter/10.1007/BFb0055930
http://link.springer.com/chapter/10.1007/BFb0055930
http://link.springer.com.ezlibproxy1.ntu.edu.sg/chapter/10.1007/3-540-61723-X_967
http://link.springer.com.ezlibproxy1.ntu.edu.sg/chapter/10.1007/3-540-61723-X_967
http://dl.acm.org/citation.cfm?id=2330800

	Introduction
	Introduction of Tileworld
	Technical background
	Assignment

	Agent design
	Introduction
	General structure and the control loop
	Cooperation
	Memory management
	Genetic programming for Tileworld

	Results and discussion
	Agent breeding
	Experiments
	Elite agents for separate environments
	Candidate agent and discussion
	Comparison

	Conclusion
	References

